A menudo indicamos la exactitud de un valor medido (es decir qué tanto creemos que se acerca al valor real) escribiendo el número, el símbolo 6 y un segundo número que indica la incertidumbre de la medición. Si el diámetro de una varilla de acero se da como 56.47 6 0.02 mm, esto implica que es poco probable que el valor real sea menor que 56.45 mm o mayor que 56.49 mm. En una notación abreviada de uso común, el número 1.6454(21) significa 1.6454 6 0.0021. Los números entre paréntesis indican la incertidumbre de los dígitos finales del número principal.
También podemos expresar la exactitud en términos del error fraccionario o error de aproximación máximo probable (también llamados incertidumbre fraccionaria o porcentaje de incertidumbre). Un resistor rotulado como “47 ohms - 10%” probablemente tiene una resistencia real que difiere de 47 ohms en menos del 10% de 47 ohms, esto es, unos 5 ohms. Es probable que la resistencia esté entre 42 y 52 ohms. En el caso del diámetro de la varilla antes citada, el error fraccionario es de (0.02 mm)>(56.47 mm), que es aproximadamente 0.0004; el error de aproximación es de (0.0004)(100%), o bien, de 0.04%. Incluso errores de aproximación muy pequeños llegan a ser muy significativos
En muchos casos, no se da explícitamente la incertidumbre de un número, sino que se indica con el número de dígitos informativos, o cifras significativas, en el valor medido. Indicamos el espesor de la portada del libro como de 0.75 mm, que tiene 3 cifras significativas. Con esto queremos decir que los dos primeros dígitos son correctos, pero el tercero es incierto. El último dígito está en la posición de las centésimas, así que la incertidumbre sería de 0.01 mm. Dos valores con el mismo número de cifras significativas pueden tener diferente incertidumbre; una distancia dada como 137 km también tiene tres cifras significativas, pero la incertidumbre es de más o menos 1 km.
Cuando usamos números con incertidumbre para calcular otros números, el resultado también es incierto. Al multiplicar o dividir números, el resultado no puede tener más cifras significativas que el factor con menos cifras significativas. Por ejemplo, 3.1416 3 2.34 3 0.58 5 4.3. Cuando sumamos y restamos números, lo que importa es la ubicación del punto decimal, no el número de cifras significativas. Por ejemplo, 123.62 1 8.9 5 132.5. Aunque 123.62 tiene una incertidumbre aproximada de 0.01, la de 8.9 sería de 0.1, así que la suma debe tener esta misma incertidumbre (0.1) y escribirse como 132.5, no 132.52.
La siguiente imagen resume las reglas para las cifras significativas.
Como una aplicación de estas ideas, suponga que quiere verificar el valor de p, la razón entre la circunferencia y el diámetro de un círculo. El valor verdadero hasta 10 dígitos es 3.141592654. Para calcularlo, dibuje un círculo grande, y mida el diámetro y la circunferencia al milímetro más cercano: obtendrá los valores de 424 mm y 135 mm (figura 1.8), los cuales dividirá con su calculadora para obtener 3.140740741, lo cual parecería no coincidir con el valor real de p, pero tenga en cuenta que cada una de sus mediciones tiene tres cifras significativas, de manera que su valor medido de p, igual a (424 mm)>(135 mm), sólo puede tener 3 cifras significativas y debería darse simplemente como 3.14. Dentro del límite de 3 cifras significativas, este valor sí coincide con el valor verdadero.
En los ejemplos y problemas de este libro, por lo regular daremos valores numéricos con 3 cifras significativas, así que sus respuestas no deberán tener más de 3 cifras significativas. (En el mundo real, muchos números incluso tienen una exactitud menor. Un velocímetro de automóvil, por ejemplo, únicamente suele indicar dos cifras significativas.) Podemos hacer operaciones con una calculadora que muestra diez dígitos, pero dar una respuesta de diez dígitos no sólo sería innecesario, sino aun erróneo, porque falsea la exactitud del resultado. Siempre redondee su respuesta final conservando sólo el número correcto de cifras significativas o, si hay duda, acaso una más. En el ejemplo 1.1 habría sido erróneo dar la respuesta como 341.11111 m>s. Cabe señalar que, al reducir una respuesta así al número apropiado de cifras significativas, debemos redondear, no truncar. La calculadora indica que 525 m>311 m es 1.688102894; con 3 cifras significativas, esto es 1.69, no 1.68.
Al calcular con números muy grandes o muy pequeños, es mucho más fácil indicar las cifras significativas usando notación científica, también llamada notación de potencias de 10. La distancia de la Tierra a la Luna es aproximadamente de 384,000,000 m, pero esta forma del número no da idea de cuántas cifras significativas tiene. En vez de ello, movemos el punto decimal ocho lugares a la izquierda (que equivale a dividir entre 108 ) y multiplicamos por 108 .
Por último, cabe señalar que precisión no es lo mismo que exactitud. Un reloj digital barato que indica que la hora es 10:35:17 A.M. es muy preciso (la hora se da con segundos); pero si el reloj está atrasado varios minutos, el valor no será muy exacto. Por otro lado, un reloj de caja puede ser muy exacto (dar la hora correcta) pero, si no tiene segundero, no será muy preciso. Una medición de alta calidad, como las que definen estándares (véase la sección 1.3), es tanto precisa como exacta.
Fuente: Libro Fisica Universitaria vol.1 Sears Zemansky 12ava edicion
Fuente: Libro Fisica Universitaria vol.1 Sears Zemansky 12ava edicion
No hay comentarios:
Publicar un comentario